B.Sc. (Hons) 5th Semester Examination,

December-2022

MATH

Paper-BHM-352

Groups and Rings

Time allowed: 3 hours]

[nMaximum marks : 60

Note: Attempt any five questions teking one question from each unit. Question No. vis compulsory.

Cait-I

- 1. (a) Prove that the set $G = \{a + b \sqrt{2}; a, b \in Q\}$ is an abelian group with respect to addition.
 - (b) Prove that arbitrary intersection of subgroups of a group is a subgroup.
- 2. (a) Prove that $G = \{1, 2, 3, 4, 5, 6\}$ with binary operation x_7 is cyclic.
 - (b) A subgroup H of a group G is normal if and only if each left coset of H in G is a right coset of H in G.

94060-P-4-Q-9 (22)

[P.T.O.

Unit–II

- (a) Show that an infinite cyclic group G is isomorphic to the additive group of integers.
 - (b) If a group G has a non-trivial automorphism, then prove that group G has atleast three elements. 6
- (a) Let Z (G) be the centre of a group G. If G/Z is cyclic, then prove that G is abelian group.
 - (b) Write all the elements of symmetric group S₃, as product of disjoint cycles.

Unit-III

- 5. (a) Prove that a ring R in which $x^2 = x \forall x \in R$, must be commutative.
 - (b) Define centre of a ring. Prove that centre of a ringR is a subring of R.6
- 6. Prove that a division ring is a simple ring. 6

Let S and T be two ideals of a ring R. Then prove that $(S + T)/S \cong T/(S \cap T)$.

94060

Unit-IV

- 7. (a) Prove that the set of all units in a commutative ring R with unity element forms an abelian group with respect to multiplication.
 - An element in a principal ideal domain is prime element iff it is irreducible.
- 8. (a) If F is a field, then prove that F[x] is a principal ideal domain.
 - (b) Let R be a unique factorization domain. An element
 in R is prime iff it is irreducible.

Unit-V

- 9. If every element of a group is its own inverse, then show that the group is abelian.
 - Prove that intersection of two normal subgroups of a group is also a normal subgroup.
 - (c). Prove that identity mapping is the only inner automorphism for an abelian group.

- (d) Write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 4 & 8 & 6 & 9 & 7 & 5 \end{pmatrix}$ as the product of disjoint cycles.
- Prove that every homomorphic image of a commutative ring is commutative.
- (f) Show that the $x^3 6x + 2$ polynomial is irreducible over Q. 2

. . !